
Design of a Transport Triggered Architecture
Processor for Flexible Iterative Turbo Decoder

Shahriar Shahabuddin, Janne Janhunen, and Markku Juntti

Department of Communications Engineering and Centre for Wireless Communications, University of Oulu, Finland.

{sshahabu, janne.janhunen, markku.juntti}@ee.oulu.fi

Abstract—In order to meet the requirement of high data rates
for the next generation wireless systems, the efficient implemen-
tation of receiver algorithms is essential. On the other hand,
the rapid development of technology motivates the investigation
of programmable implementations. This paper summarizes the
design of a programmable turbo decoder as an application-
specific instruction-set processor (ASIP) using Transport Trig-
gered Architecture (TTA). The processor architecture is designed
in such manner that it can be programmed to support other
receiver algorithms, for example, decoding based on the Viterbi
algorithm. Different suboptimal maximum a posteriori (MAP)
algorithms are used and compared to one another for the soft-
input soft-output (SISO) component decoders in a single TTA
processor. The max-log-MAP algorithm outperforms the other
suboptimal algorithms in terms of latency. The design enables
the designer to change the suboptimal algorithms according to
the bit error rate (BER) performance requirement. Unlike many
other programmable turbo decoder implementations, quadratic
polynomial permutation (QPP) interleaver is used in this work
for contention-free memory access and to make the processor
3GPP LTE compliant. Several optimization techniques to enable
real time processing on programmable platforms are introduced.
Using our method, with a single iteration 31.32 Mbps throughput
is achieved for the max-log-MAP algorithm for a clock frequency
of 200 MHz.

I. INTRODUCTION

The turbo coding scheme [1] has been adopted for the air
interface standard called Long Term Evolution (LTE), that has
been defined by the 3rd Generation Partnership Project (3GPP)
[2]. The decoding algorithm for the component decoder is
not specified by 3GPP. Different suboptimal algorithms have
been used for the turbo decoding and new solutions with less
complexity are still being invented quite frequently. A pro-
grammable implementation simplifies the necessary support
for different suboptimal algorithms of component decoders and
different interleaving methods.

The turbo decoding algorithm is still one of the most
computationally intensive parts of the wireless receiver. The
software implementations provide the required flexibility to
support multistandard solutions, but requires a careful design
to achieve the target throughput. On the other hand, the
hardware implementations provide high throughput, but the
development time is not as rapid as processor based implemen-
tations. Programmable accelerators, which enable software-
hardware co-design method might be an attractive solution
to overcome these bottlenecks. The design of software and

hardware together to grind out the best performance and ensure
programmability is not a straightforward task. The designer
needs a very efficient tool, which can be used to design the
processor easily for a particular application.

In this paper, we propose a design of a processor based
on the Transport Trigger Architecture (TTA) for a flexible
turbo decoder. TTA is a very good processor template for
a programmable application-specific instruction-set processor
(ASIP). The TTA based codesign environment (TCE) tool
enables the designer to write the application with high level
language and design the target processor in a graphical user
interface at the same time [3].

The turbo decoder based on the transport triggred architec-
ture was implemented by Salmela et al . [4]. The throughput
of the processor was comparable to those of the turbo decoders
based on a pure hardware design, but was less flexible in
comparison with the design presented in this paper. The
interleaver of the processor was not presented according to
the 3GPP LTE standard.

The focus of the turbo decoder processor design in this
paper is flexibility. The quadratic permutation polynomial
(QPP) interleaving pattern have been used for the interleaver
block. The comparison with the other suboptimal algorithms
like log-MAP, constant-log-MAP and linear-log-MAP has also
been presented.

The rest of the paper is organized in the following way:
In Section II, an overview of the turbo decoder has been
presented. In Section III, the simplification techniques of
the turbo decoding algorithm and its implementation in high
level language is presented. The processor design has been
presented in Section IV. In Section V, we will present the
throughput results of the design. The conclusion is given in
Section VI.

II. TURBO DECODER

A. Turbo Decoder Structure

The turbo decoder consists of two soft-input soft-output
(SISO) decoders, with interleavers and de-interleavers between
them as shown in Fig. 1. The inputs of the turbo decoder come
from the soft demodulator, which produces the log-likelihood
ratios (LLR) for the systematic bits and parity bits. The LLRs
of the systematic bit, LuI and first parity bits, LcI1 goes to the
first SISO decoder. The SISO decoder produces soft outputs

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

16

based on these LLRs. These soft outputs are used in the
second SISO decoder as the additional information. The inputs
of the second SISO decoder are the LLRs coming from the
systematic bits, second parity bits denoted by LcI2 and output
of the first SISO decoder. The LLRs of the systematic bits are
scrambled this time with the same interleaving pattern used at
the encoder. Similarly, the soft outputs coming from the first
SISO decoder are scrambled also with the same interleaving
pattern, which are used as a priori values for the second SISO
decoder.

Fig. 1. Block diagram of the turbo decoder.

The heart of the turbo coding is the iterative decoding
procedure. The output of the second SISO decoder does not
produce the hard outputs immediately, but the soft output
is used again in the first SISO decoder for more accurate
approximation. The process continues in a similar fashion in
an iterative manner. A single iteration by both the first and the
second SISO decoder is referred to as a full iteration. On the
other hand, the operation performed by a single SISO decoder
can be referred to as a half iteration. At the beginning of the
first iteration, the a priori values are set at zero. Six to eight
full iterations are used to achieve sufficient performance [1].

B. MAP algorithm for Component Decoder

The MAP algorithm for the component decoder applied here
has been proposed by Benedetto et al . [5]. The algorithm can
be stated like:

1. Initialize the values of the forward state metric as α0(s) =
0 if s = S0 and α0(s) = −∞ otherwise.

2. Calculate all the forward state metric of the same window
through the forward recursion according to

αk(s) = max∗(αk−1[s
S(e)] + u(e)LuI[k − 1]

+ c1(e)LcI1[k − 1] + c2(e)LcI2[k − 1]).
(1)

3. Initialize the values of the backward state metric as
βn(s) = 0 if s = Sn and βn(s) = −∞ otherwise.

4. Calculate all the backward state metric of the same
window through the backward recursion as

βk(s) = max∗(βk+1[s
E(e)] + u(e)LuI[k + 1]

+ c1(e)LcI1[k + 1] + c2(e)LcI2[k + 1]).
(2)

5. The LLR values for the information and both parity bits
can be calculated as following:

LLR(.;O) = max∗(αk−1[s
S(e)] + c1(e)LcI1[k − 1]

+ c2(e)LcI2[k + 1] + βk+1[s
E(e)]).

(3)

The forward metric and backward metrics increase in each
step and that is why the forward and backward metrics need
to be normalized to avoid memory overflow.

The decoding is done in smaller windows so that the
decoding process can be done in parallel and the decoder does
not have to wait for the whole block to arrive before starting
the decoding process. This windowing is sometimes referred
to as a sliding window method.

Based on the definition of the max∗ function, the suboptimal
algorithms can be changed for the MAP algorithm. As for an
example, for constant-log-MAP algorithm it can be expressed
as

max∗(x, y) = max(x, y) +

{
0 if |y − x| > T

C if |y − x| ≤ T.
(4)

We considered four suboptimal MAP algorithms, which are
Max-log-MAP, constant log MAP, linear-log-MAP and an ap-
proximation of log-MAP algorithm. A more detailed overview
of these algorithms can be found in [6], [7] and [8].

C. QPP Interleaver

The QPP interleaver has been adopted for the 3GPP LTE
standard [3]. Unlike the earlier 3G interleavers, the QPP inter-
leaver is based on algebric constructions. The QPP interleaver
can be expressed by a simple mathematical formula. The
relationship between the output index x and the input index
f(x) can be derived from this formula given below

f(x) = (f2x
2 + f1x)mod(N). (5)

The values of the parameters f1 and f2 of (5) are integers and
depend on the block size N . For a different N , a different set
of parameters have been defined in [9]. The block sizes are
divisible by 4 and 8. The value of f1 is an odd number while
the value of f2 is an even number. Several algebric properties
of QPP interleaver have been listed in [10].

III. DESIGN IN HIGH LEVEL LANGUAGE

The MAP algorithm described above is complex and needs
to be simplified. The repeated calculations should be avoided,
which in turn reduces the latency of the processor. The
reduced calculations used in this work will be described in
the following section. The reduced design has been tested
in a link level simulator using Matlab. The Matlab design
is converted to C language in such a way so that it can be
efficiently implemented in the TCE tool.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

17

Fig. 2. Trellis of 3GPP turbo code.

There are 16 branch metric computations between two states
for forward metric, backward metric and LLR calculations.
From the trellis structure of the 3GPP turbo code it can be
seen that four calculations of branch metric are being repeated
to result in total sixteen calculations. Instead of multiplying
with 1 and −1, the branch metrics can be calculated directly
based on these four calculations,

γ1 = LuI + LcI1 + LcI2

γ2 = −LuI − LcI1 + LcI2

γ3 = LuI + LcI1− LcI2

γ4 = −LuI − LcI1− LcI2,

(6)

where γ4 can be represented as −γ1 and γ3 can be represented
as −γ2. For every forward metric, the backward metric and the
LLR, calculations of two branch is sufficient. As an example,
the backward metric calculations are shown as,

β1(k) = max∗(β1(k + 1)− γ1, β5(k + 1) + γ1)

β2(k) = max∗(β1(k + 1) + γ1, β5(k + 1)− γ1)

β3(k) = max∗(β6(k + 1) + γ2, β2(k + 1)− γ2)

β4(k) = max∗(β6(k + 1)− γ1, β2(k + 1) + γ1)

β5(k) = max∗(β1(k + 1)− γ1, β5(k + 1) + γ1)

β1(k) = max∗(β1(k + 1)− γ1, β5(k + 1) + γ1)

β1(k) = max∗(β1(k + 1)− γ1, β5(k + 1) + γ1)

β1(k) = max∗(β1(k + 1)− γ1, β5(k + 1) + γ1).

(7)

A similar idea has been presented in [11] where a simplified
version of max-log-MAP has been proposed. The forward

metrics have been calculated first in this design by following
the simplified equation. The normalization technique is done
following the technique suggested by Valenti et al . [12]. Typ-
ically, the normalization is done in every step by subtracting
the minimum values of forward or backward metrics of the
same column from every forward or backward metric values.
They suggested subtracting all the values from the first values
of the columns. Thus, there is no need to store the first row
and this constitutes 12.5 percent savings in memory compared
with the other normalization methods.

Only the forward metrics are saved for the calculation of
the LLRs. The backward metrics and LLR calculations are
done together. As soon as the backward metric calculations
of a single column are finished, the LLRs are calculated in
parallel with the help of the stored forward metric at the same
time. So there is no need to save the backward matrics [12].

Originally, α and β are two-dimensional matrices of size
6144 × 8 as the input block of 6144 information bits have
been taken into consideration. The processor needs to do
more calculation for accessing these two dimensional matrices.
Instead of using a single 6144 × 8 matrix, seven vectors of
6144 elements have been used. As mentioned above, the eighth
vector is not needed due to the normalization strategy adopted
in the used method.

The turbo decoder description in C needs to be efficient to
fulfill the latency requirement. A lot of data dependencies can
be seen from the turbo decoder algorithm. So, writing efficient
code is needed for the utilization of computing resources
available.

Assuming thatenough register files are available, efficient
code is written to reduce memory accesses by holding the
values inside the register files. It is also possible to eliminate
the need for accessing the forward metric vectors constantly.
Instead, the temporary variables are used to hold the values
inside the registers. The code for the backward metric and the
LLR calculations have been written in the same manner. The
calculations are done is several smaller loops to follow the
sliding window technique and to enable parallel calculations.

A look-up table, holding the values of the f1 and f2
parameters, is used to implement the QPP interleaver. The
rest of the calculations are quite straightforward.

IV. TRANSPORT TRIGGERED ARCHITECTURE PROCESSOR

A. General Functional Units

A part of the processor designed for the turbo decoder
is illustrated in Fig. 3. For readability, the whole processor
figure is not given. The blocks on the upper part of the figure
represent the functional units and register files of the processor.
The black horizontal straight lines represent the buses of
the processor. The vertical rectangular blocks represent the
sockets. The connection between functional units and buses is
illustrated by black spots in the sockets.

The fixed point processor includes load/store unit (LSU),
arithmetic logic unit (ALU), global control unit (GCU) and
register files. Based on the resource requirements in high level

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

18

Fig. 3. Implemented processor with reduced number of functional units.

language, more functional units and register files have been
added.

The LLR inputs have been read from a first-in-first-out
(FIFO) memory buffer by using the functional unit called
STREAM. The STREAM units can read every input sample
in one clock cycle. Eight STREAM units have been used to
get the input LLRs simultaneously. The STREAM units are
used to implement the sliding window technique that helps
to decode the input block in smaller parts parallely. One
STREAM unit has been used to write the output LLRs in
the memory buffer.

Three LSU units have been used to support the memory
accesses. The LSU units are used to read and write memory.
The memory can be read in three clock cycles and can be
written in a single cycle.

The ALU unit has been used to perform the basic arith-
metic operations like addition, subtraction etc. Operations like
shifting right or left are also included in ALU.

B. METRIC Special Function Unit

Like the Viterbi decoder, the turbo decoder needs numerous
add-compare-select operations. One way to design the proces-
sor for these algorithms is to use the appropriate number of
adder and maximum selection units. Another way is to design
a special function unit to calculate all the necessary next state
metrics based on the earlier state metrics and branch metrics.

The latter way is followed in our design and a special
function unit named METRIC has been designed with twelve
inputs and eight outputs. Eight of these inputs correspond to
the forward metrics in case of forward metric calculations
and backward metrics in case of backward metric calculations.
Three of these inputs correspond to the a priori LLR, the LLR
of systematic bits and the LLR of parity bits, respectively. One
input is used to select different suboptimal algorithms and this
input is named mode in this paper.

The forward and backward metrics calculations are not the
same. The inputs and outputs of the unit need to be selected
carefully because the same unit has been used for both forward
and backward metric computations. Using the same unit for
forward and backward metric computations is possible because
of the trellis structure of a 3GPP turbo code.

The design of the Metric unit for one butterfly pair in
the trellis is shown in Fig. 4. The values of branch metrics
to calculate α2(k) and β3(k) are the same. Likewise, the
values of branch metrics to calculate α6(k) and β4(k) are
also the same. It is possible to calculate these forward and
backward metrics by changing the input values of the earlier
state metrics. This is true for all the rest of the butterfly
pairs in the trellis. The METRIC unit uses this technique of
changing the orders of the input metrics for the backward
metrics calculation, but using the same function unit.

The METRIC unit supports four operations. These four
operations are branch metric calculations for max-log-MAP,
linear-log-MAP, constant-log-MAP and log-MAP respectively.
The latency of these operations are different because these
operations use different codes for different algorithms.

C. MAX7 Special Function Unit

Another special function unit named MAX7 has been
designed, which is used to calculate the output LLRs after
the forward and backward metrics computation. This unit
also has four options for four suboptimal algorithms. For the
max-log-MAP mode, the MAX7 unit takes seven inputs and
finds the maximum of these inputs. The LLR calculation uses
the maximum value of seven computations in this case. The
addition of the forward metric, branch metric and next state
backward metric represent these computations. It is possible to
reduce one computation because of the normalization method
chosen in this design. We have given the added values of these
seven computations as inputs to this unit and used the output as

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

19

Fig. 4. METRIC unit for a single butterfly pair.

the LLR. The latency of this unit is different for four different
algorithms.

D. Registers

Several register files have been used to save the intermediate
results. In terms of the power consumption, registers can
be more expensive than memory, but to meet the latency
requirement register files are needed. A single Boolean register
file has been included in the processor design.

V. RESULTS AND DISCUSSION

The designed processor takes 39,226 clock cycles to process
three blocks of 6,144 samples for a full iteration for the max-
log-MAP mode. According to the 3GPP interleaver specifica-
tions, the size of the block could be up to of 6,144 samples
and that is the reason the size of the input block is chosen as
6,144.

When we assume a clock of 200 MHz, then the throughput
of one iteration for the max-log-MAP could be calculated as,

Throughput =
6, 144 bits × 200 MHz
39, 226 clock cycles
= 31.32 Mbps.

The clock cycle needed for a single trellis stage of the max-
log-MAP can be calculated as,

CycleStage =
39, 226

2× 6, 144

= 3.19 cycles.

TABLE I
NUMBER OF CLOCK CYCLES FOR A SINGLE ITERATION

Modes Algorithm Clock Cycle
1 max-log-MAP 39,226
2 linear-log-MAP 103,436
3 constant-log-MAP 184,454
4 log-MAP 834,253

It can be seen from Table I that the processor takes more
clock cycles if max-log-MAP algorithm is not used. The

reason lies in the fact that the constant-log-MAP, linear-log-
MAP and log-MAP algorithms need to invoke some condi-
tional statements resulting in branches in execution. Thus, the
latency increases compared to the max-log-MAP algorithm.
A less complicated approximation of log-MAP has been used
in this design. However, the correction term of the log-MAP
increases the latency significantly compared to the other three
suboptimal algorithms even after the simplification. Linear-
log-MAP is slower than the constant-log-MAP because of
some multiplication operations are needed. The log-MAP
algorithm provides better BER performance than the other al-
gorithms. This log-MAP can be used in cases when the latency
requirements are not strict and a high BER performance is
needed.

The buses of the processor are perfectly utilized to achieve
the best possible result due to the perfect scheduling. The num-
ber of some of the operations during the algorithm execution
has been summarized in Table II.

TABLE II
NUMBER OF OPERATIONS

Operation # of OPS
ADD 339,009
SUB 98,304
MUL 45,234

MAX7 24,567
BRANCH 24,576
STREAM 24,556

The number of addition operations does not only represent
the addition for the algorithm, but for several other purposes
like loop indexing for the code. The subtraction operations
are due to the normalization and the multiplication is used for
the correction term calculation of linear-log-MAP and for the
QPP interleaving sequence generation.

The throughput can be increased using dedicated special
function units working as accelerators for the processor. On
the other hand, the more special function units are used, the
less flexible the processor becomes. As an example, a special
function unit dedicated to calculate the backward metric and
the LLRs could be designed to reduce latency. However, it
might be useless for some other functionalities. A common
special function unit to calculate both forward and backward
metric could be better utilized in this case.

The TTA processor designed here will work for the Viterbi
decoding with reasonable throughput. The BRANCH unit for
the max-log-MAP mode is able to calculate the add-select-
compare operations needed for the Viterbi decoding.

A comparison with different other programmable implemen-
tations of turbo decoder has been presented in Table III. Our
proposed processor provides very good throughput compared
to most of the programmable implementations. The processor
throughput is lower than the TTA processor of [5] for the same
clock frequency of 200 MHz, because of the complex structure
of QPP interleaver and de-interleaver.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

20

TABLE III
PROGRAMMABLE PROCESSORS

Reference Architecture Algorithm Throughput
[13] Motorola max-log-MAP 243 Kbps
[12] Intel Pentium max-log-MAP 366 Kbps
[14] TMS320C6201 DSP max-log-MAP 2 Mbps
[15] VLIW ASIP max-log-MAP 5 Mbps
[4] TTA proc. for UMTS max-log-MAP 14.1 Mbps

Proposed TTA proc. max-log-MAP 31.21 Mbps
[4] TTA proc. max-log-MAP 98 Mbps

VI. CONCLUSION

The paper discussed the design issues of a turbo decoder on
a TTA processor. The reference turbo decoder design has been
simulated on a Matlab link level simulator. The design is then
converted and optimized in C language and mapped on the
TTA processor using TCE tool. The design shows the promise
of the possibility of designing several decoding techniques on
a single TTA processor. As the turbo decoding algorithm is
very complex, it is very difficult to achieve the LTE target
throughput even with pure hardware designs. The parallel
multi-core turbo decoder is the natural choice for the next
generation wireless systems. The target throughput could also
be reached by multi-core TTA processor. The flexibility gained
from that processor could provide very interesting results and
would be a fruitful direction for future research.

VII. ACKNOWLEDGEMENT

This research was supported by the Finnish Funding Agency
for Technology and Innovation (Tekes), Renesas Mobile Eu-
rope, Nokia Siemens Networks, Elektrobit and Xilinx. Special
thanks are due to Dr. Perttu Salmela from Tampere University
of Technology for sharing his insights on programmable turbo
decoder implementations.

REFERENCES

[1] C. Berrou, A. Glavieux, P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: turbo-codes,” in IEEE International
Conference on Communication, vol. 2, pp. 1064-1070, Geneva, Switzer-
land, May 1993.

[2] Multiplexing and channel coding, 3GPP TS 36.212 version 10.5.0.
[3] P. Jääskeläinen, V. Guzma, A. Cilio, T. Pitkänen, and J. Takala,

“Codesign toolset for application-specific instruction-set processors,” in
Multimedia on Mobile Devices 2007, vol. 6507 of Proceedings of SPIE
pp. 1-11, San Jose, Calif, USA, January 2007.

[4] P. Salmela, H. Sorokin, and J. Takala, ”A programmable max-log-MAP
turbo decoder implementation,” Hindawi VLSI Design, vol. 2008, pp
636-640, 2008.

[5] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “A soft-input
soft-output maximum a posteriori (MAP) module to decoder parallel
and serial concatenated codes,” in JPL TDA Progr. Rep., vol. 42-127,
pp. 1-20, Jet Propulsion Lab., Pasadena, CA, 1996.

[6] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and suboptimal max-
imum a posteriori algorithms suitable for turbo decoding,” in European
Trans. on Telecommun., vol. 8, pp. 119-125, Mar./Apr. 1997.

[7] B. Classon, K. Blankenship, and V. Desai, “Turbo decoding with the
constant-log-MAP algorithm,” in Proc., Second int. Symp. Turbo Codes
and Related Appl., pp. 467-470, Brest, France, Sept. 2000.

[8] J.-F. Cheng, and T. Ottosson, ”Linearly approximated log-MAP algo-
rithms for turbo coding,” in Proc., IEEE Veh. Tech. Conf., Houtson, TX,
May 2000.

[9] A. Nimbalker, Y. W. Blankenship, B. K. Classon, and K. T. Blankenship,
“ARP and QPP Interleavers for LTE Turbo coding,” in IEEE Wireless
Communications and Networking Conference, pp. 10321037, April
2008.

[10] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a
highly-parallel 3GPP LTE, LTE-advance turbo decoder,” in Integr.,VLSI
J., vol. 44, no. 1, pp. 1-11, 2010.

[11] P. Salmela, T. Järvinen and J. Takala, “Simplified max-log-MAP decoder
structure,” in Proceedings of the 1st Joint Workshop on Mobile Future
and the Symposium on Trends in Communications (SympoTIC ’06), pp.
1-11, San Jose, Calif, USA, January 2007.

[12] M. C. Valenti, J. Sun, “The UMTS turbo code and an efficient decoder
implementation suitable for software defined radios,” in International
Journal on Wireless Information Networks, vol. 8, no. 4, pp. 203-216,
Oct. 2001.

[13] H. Michel, A. Worm, M. Munch, and N. Wehn, “Hardware software
trade-offs for advanced 3G channel coding,” in Proceedings of Design,
Automation and Test in Europe, 2002.

[14] Y. Song, G. Liu and Huiyang, “The implementation of turbo decoder
on DSP in W-CDMA system,” in International Conference on Wireless
Communications, Networking and Mobile Computing, pp. 1281-1283,
Dec. 2005.

[15] P. Ituero and M. López-Vallejo, “New schemes in clustered VLIW
processors applied to turbo decoding,” in Proceedings of International
Conference on Application-Specific Systems, Architectures and Pro-
cessors (ASAP ’06), pp. 291-296, Steamboat Springs, Colo, USA,
September 2006.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

21

